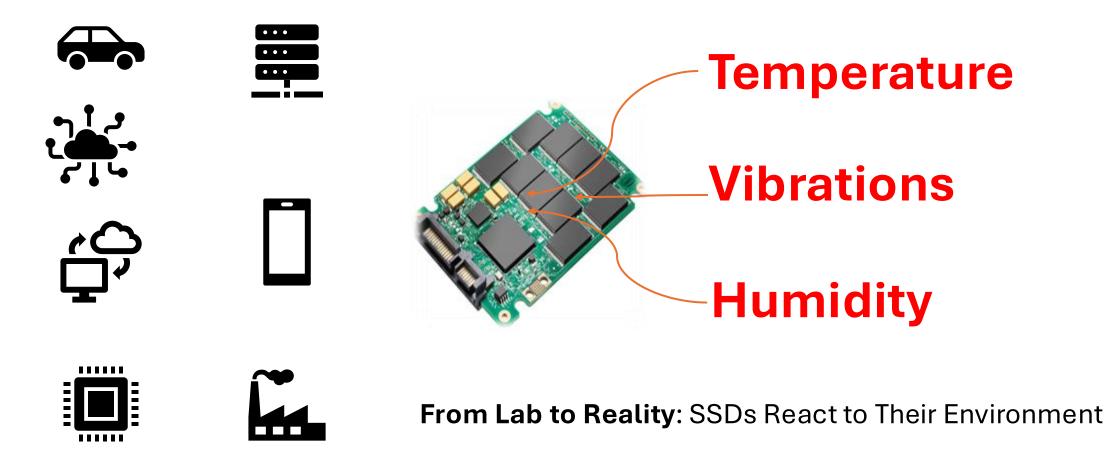


Can LLMs Model the Environmental Impact on SSD?

Mayur Akewar^{1,*}, Gang Quan¹, Sandeep Madireddy² and Janki Bhimani¹

¹Florida International University ²Argonne National Laboratory


*makew001@fiu.edu

Operational Environment Where You Run It, Matters

[6] https://www.theregister.com/2018/06/22/azure_north_europe_downed_by_pleasant_weather/

[7] https://www.hpcwire.com/2010/01/19/startup_takes_aim_at_performance-killing_vibration_in_datacenter/

Environmental Conditions Influence on SSD Operation

When it gets hot, humid, or shaky, your SSD doesn't keep up

[1] What Does Vibration Do to Your SSD? [2] Do Temperature and Humidity Exposures Hurt or Benefit Your SSDs? [3] Investigating Power Outage Effects on Reliability of Solid-State Drives [4] SSD Failures in the Field: Symptoms, Causes, and Prediction Models [5] Impact of Environmental Factors on Flash Storage Performance in Autonomous Vehicles ³

Related Studies

Controlled Environmental Testing

- Costly, small-scale studies (≈ 100 drives) explore limited temperature– humidity scenarios [1, 2]
- Require climate chambers, vibration tables, irradiation facilities → 120h+ per run; many SSDs discarded [1, 2]
- Stress exposure is cumulative: brief peaks cause latent flash wear that skews future results [5]

Data-Driven Modeling

- Analytical formulas & ML built on field SMART logs [4]
- Calibrated to one setting → often break under unseen stressor mixes
- Limited explanatory power: predict what fails, not why

[1] What Does Vibration Do to Your SSD? [2] Do Temperature and Humidity Exposures Hurt or Benefit Your SSDs? [3] Investigating Power Outage Effects on Reliability of Solid-State Drives [4] SSD Failures in the Field: Symptoms, Causes, and Prediction Models [5] Impact of Environmental Factors on Flash Storage Performance in Autonomous Vehicles

Why Is It Challenging to Model Environmental Effects on SSDs?

- Limited Experimental Data
- Historical Exposure Effects (Domino Impact)
- Correlated Environmental Variables (Temp ↔ Humidity)
- NAND Variability (TLC vs. MLC vs. SLC Responses)
- ML & Analytical Models struggle to Generalize (Devices × Environments × Stressors)

Why LLMs? Using LLMs to Reason About SSDs

Natural Language Reasoning

Explainability, Step-by-step logic, Interpretability, Predictive Insight, Cause-Effect Understanding

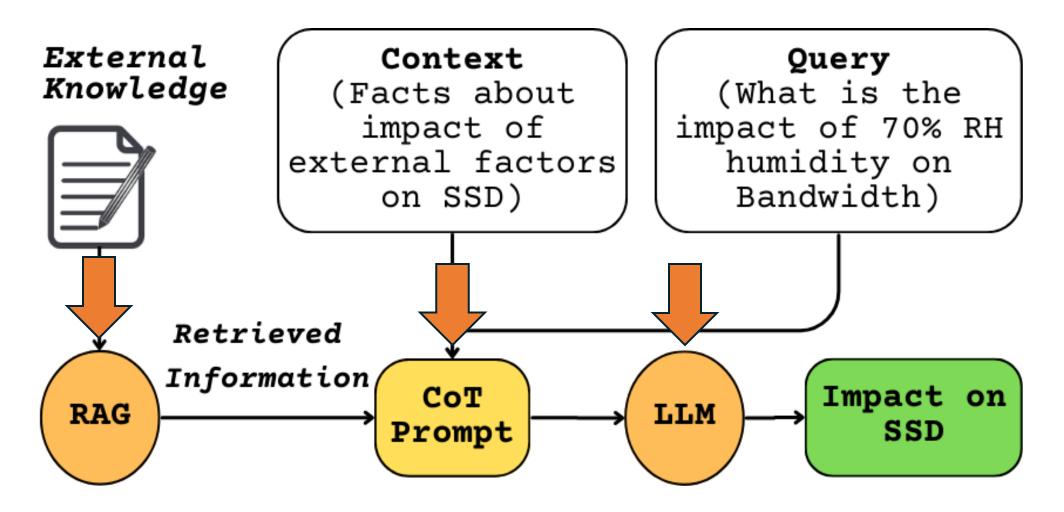
Factual recall, Logical inference, Reasoning

Multifactor Analysis Made Easy

Trade-offs, NAND type, Environmental stressors

Grounded Answers with Guidance

Domain Knowledge, Real-world alignment **Real-World Use Cases** *Key-Value stores* [6], *HPC I/O* [7] A 15°C rise in ambient temperature can affect the read latency of an SSD, but the impact is typically minimal under normal operating conditions. Here's a breakdown of what you can expect:


How would a 15°C rise in ambient SSD Temperature Sensitivity: temperature affect the read latency of NAND Flash Behavior: an SSD?

- NAND flash memory is slightly temperature-sensitive, but read operations are less affected than write or erase operations.
- A temperature rise of 15°C is unlikely to cause a dramatic change in read latency unless it pushes the SSD past its optimal thermal range.
- 2. Controller Thermal Throttling:
 - SSDs have controllers that may throttle performance if temperatures approach critical levels (typically ~70–85°C).
 - If the ambient temperature increase causes the SSD's internal temperature to exceed its thermal throttling threshold, the controller might slow down all operations, including reads, to prevent overheating.
 - In such cases, read latency could increase noticeably—but only if throttling kicks in.

LLMs Aren't Scientists-Yet Challenges

- **Prompt Matters**: A vague question leads to a vague answer
- **Context Blindness**: LLMs can misread the situation.
- Cross-Domain Confusion: May borrow logic from unrelated domains
- False Confidence: Hallucinating unsupported claims

Making LLMs Think Like SSD Experts

Chain-of-Thought Prompting Teaching LLMs to Think, Not Just Answer

What is Chain-of-Thought (CoT) Prompting?

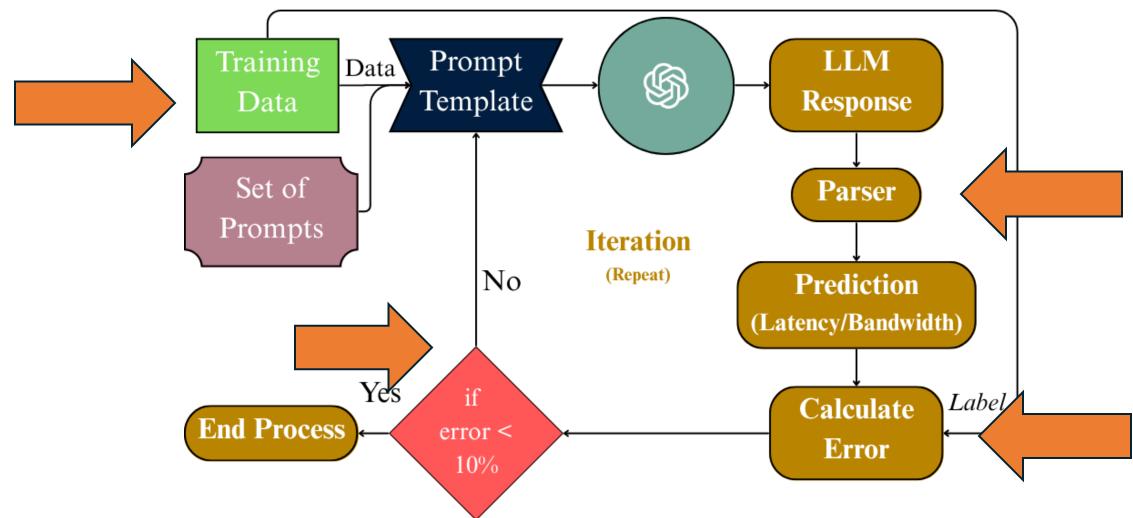
Guides the LLM to generate intermediate steps before reaching a final answer (mimicking how a domain expert would reason)

Why It Matters for SSD Modeling

Environmental impact, Multi-factor analysis, Complex inference How We Use CoT Prompting

model explicitly (Think step by step) or implicitly through examples
Benefits Observed

Better accuracy, Explainability, Robust predictions

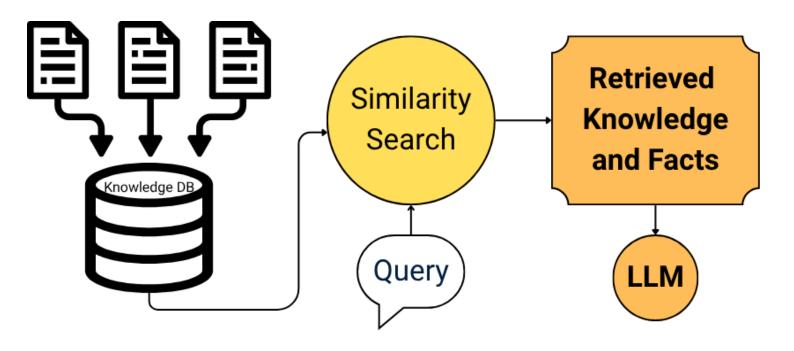

Chain-of-Thought Prompting

An SSD with TLC NAND runs a workload while the temperature rises from room temperature to 50° C, with relative humidity fixed at 50%. **Think step by step:**

① How does increased temperature affect TLC NAND (e.g., electron mobility, latency)? ② Does 50°C risk thermal throttling or higher bit error rates in the controller? ③ Does 50% RH impact performance via circuit capacitance or signal delay? ④ Estimate the change in:

(a) Overall performance, (b) Tail Latency (90th–99.99th), (c) Bandwidth, (d) Failure likelihood.

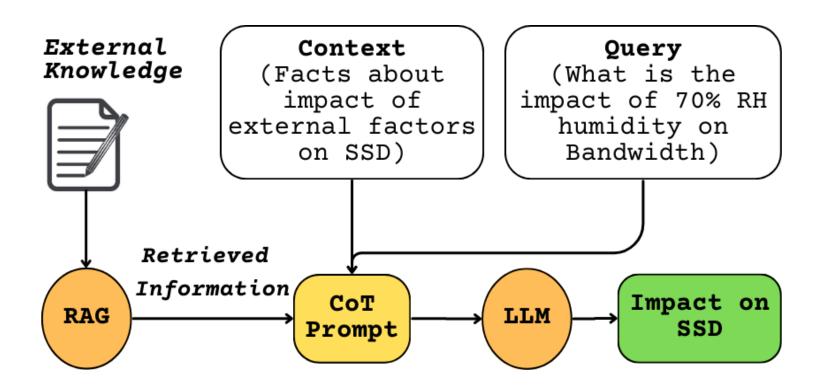
How Effective Is the CoT Prompt?



Grounding LLMs with Retrieval-Augmented Generation (RAG)

RAG enhances LLM performance by retrieving relevant knowledge from a curated corpus and injecting it into the prompt

reducing hallucinations and improving trustworthiness


Retrieval-Augmented Generation (RAG)

Why RAG Matters?

- Provides factual support in complex, multifactor scenarios
- Helps the LLM reason based on actual system behavior
- Eliminates the need for large training datasets or retraining the model

Bringing It All Together

By combining CoT Reasoning and RAG, we create an LLM framework that is accurate, interpretable, and grounded in real-world SSD behavior.

Putting the Framework to the Test

Scenario Set

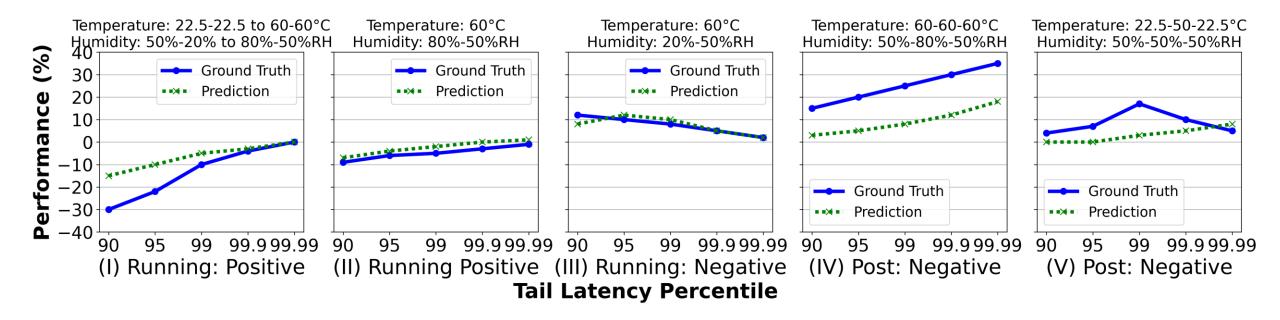
• Temp-humidity swings • Parallel and Vertical vibrations

Data Split

• 20% training • 20% retrieval • 60% test

Prompt Pipeline

a) RAG fetches relevant facts


b) Combine with CoT template + query

c) Send to GPT-40

Validation Loop

- 10 runs per scenario for consistency
- Compare predicted tail-latency & bandwidth to ground truth

Temperature and Humidity Impact

Our results show low RMSE values under the various temperature and humidity settings: about 9% for tail-latency predictions.

Refer to the paper for detailed results and discussion ...

Future Research Directions

Ablation Studies

Isolate RAG vs. CoT roles under varying workloads, applications and stress conditions

Expanded Conditions

Include aging, pressure, radiation in scenario design

Benchmarking Open-Source LLMs

Compare generality, efficiency, and deployment readiness

Problem Statement

Can LLMs model the Environmental stressors (temperature, humidity, vibration) impact on SSDs?

Key Challenges

- o Scarcity of comprehensive experimental data
- $\circ~$ Cumulative and interrelated effects of stressors
- $\,\circ\,$ Heterogeneous responses across NAND types (SLC, MLC, TLC) .

Proposed LLM-Based Framework

- Chain-of-Thought Prompting to elicit step-by-step reasoning
- o Retrieval-Augmented Generation to ground predictions in empirical results and device specs .
- Impact
 - Enables proactive "what-if" SSD health assessments

Thank you!

https://github.com/Damrl-lab/SSD_LLM

Contact Information

Mayur Akewar

makew001@fiu.edu

